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ABSTRACT 
The variation in soil shear strength parameters leads to the formation of a plastic yield zone within a 

slope. In the post-deformation state, the material properties are altered and no longer remain intact as 
before; inter-particle bonds are broken, and the structure is destroyed. In this paper, the strength reduction 
method (SRM) is applied to identify the mechanism of formation, the development process, the potential 
displacement, as well as the precise location of the plastic yield zone along the slip surface of the slope. 
A 3D slope model is developed, analyzed, and used to calculate the factor of safety and delineate the 
plastic yield zone that indicates slope failure, The simulations were performed in Midas GTS NX, which 
integrates the shear strength reduction technique into its finite element method. 
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TÓM TẮT 
Mỏ đất hiếm dạng hấp phụ ion là loại hình khoáng sản có giá trị chiến lược, phân bố phổ biến trong 

các vỏ phong hóa tại vùng nhiệt đới ẩm. Tuy nhiên, việc đánh giá tài nguyên và phân vùng triển vọng đối 
với kiểu mỏ này còn gặp nhiều thách thức do đặc điểm phân bố phức tạp và dữ liệu thực địa hạn chế. 
Trong nghiên cứu này, các phương pháp hiện đại gồm nội suy địa thống kê Kriging và mô hình học máy 
như Random Forest (RF) và Support Vector Machine (SVM) đã được tích hợp để phân tích dữ liệu địa 
hóa và mô hình hóa phân bố tài nguyên đất hiếm (REE) trên diện tích khảo sát 10 km². 

Trên cơ sở 30 điểm mẫu thực nghiệm và lưới dữ liệu mô phỏng gồm 10.000 điểm, các mô hình học 
máy đã được huấn luyện để xác định vùng triển vọng theo hàm lượng REE_sum. Kết quả phân vùng cho 
thấy khu vực trung tâm có xác suất triển vọng cao, được cả hai mô hình RF và SVM đồng thuận. Phép 
nội suy Kriging cho thấy phân bố hàm lượng REE giảm dần từ trung tâm ra rìa với mức độ liên tục không 
gian cao. Dữ liệu cũng được chia theo block 500 m × 500 m để tính toán tài nguyên, với tổng tài nguyên 
ước tính đạt khoảng 11.300 tấn REE, chủ yếu tập trung tại các block trung tâm. Mô hình khối 3D đã được 
xây dựng nhằm hỗ trợ trực quan hóa và định hướng khai thác. 

Nghiên cứu này khẳng định hiệu quả của việc tích hợp phương pháp Kriging và các mô hình học máy 
(machine learning models) trong mô hình hóa không gian và đánh giá tài nguyên mỏ đất hiếm hấp phụ 
ion. Kết quả không chỉ có ý nghĩa phương pháp mà còn mang giá trị khoa học và thực tiễn, góp phần định 
hướng các nghiên cứu và điều tra tài nguyên đất hiếm (REE_sum) tại Việt Nam trong thời gian tới. 

Từ khóa: đất hiếm, hấp phụ ion, phương pháp Kriging, học máy, Random Forest, SVM 
@ Hội Khoa học và Công nghệ Mỏ Việt Nam 

 
1. ĐẶT VẤN ĐỀ 

Trong bối cảnh hiện nay, khi nhu cầu về 
khoáng sản chiến lược như đất hiếm ngày càng 
tăng do vai trò thiết yếu trong các ngành công nghệ 
cao như điện tử, năng lượng tái tạo và quốc phòng, 
việc nghiên cứu địa chất mỏ nhằm đánh giá trữ 
lượng, phân bố và tiềm năng khai thác khoáng sản 
ngày càng trở nên cấp thiết (Castor & Hedrick, 
2006; Xu et al., 2020). 

Tuy nhiên, dữ liệu địa chất thường mang tính 
rời rạc, không gian không đồng đều và bị giới hạn 
bởi chi phí và điều kiện địa hình trong quá trình lấy 
mẫu. Do đó, việc áp dụng các công nghệ phân tích 

và dự báo hiện đại nhằm tối ưu hóa hiệu quả xử lý 
dữ liệu trở thành một hướng đi cần thiết (Zuo, 
2017; Carranza, 2022). 

Trong những năm gần đây, học máy (Machine 
Learning) và phương pháp Kriging (Kriging) một kỹ 
thuật nội suy địa thống kê mạnh mẽ đã nổi lên như 
các công cụ hiệu quả, hỗ trợ phân tích, mô hình 
hóa và dự báo các đặc trưng địa chất, địa hóa và 
khoáng sản trên cơ sở dữ liệu đầu vào hạn chế 
(Goovaerts, 1997; Zuo, 2017). Sự kết hợp giữa 
Kriging và các mô hình học máy không chỉ nâng 
cao độ chính xác trong nội suy không gian mà còn 
cho phép phát hiện các mối liên hệ phi tuyến, phức 



ĐỊA CƠ HỌC, ĐỊA TIN HỌC, ĐỊA CHẤT, TRẮC ĐỊA                                    

84 SỐ 6 - 2025

CÔNG NGHIỆP MỎ 

Website: https://tapchi.hoimovietnam.vn

tạp giữa các biến địa chất điều mà các phương 
pháp truyền thống khó nhận diện (Grunsky et al., 
2009; Li et al., 2023). 

Mỏ đất hiếm dạng hấp phụ ion là kiểu mỏ đặc 
trưng cho các vùng nhiệt đới ẩm, nơi các đá giàu 
đất hiếm như granitoid, rhyolite, syenite... bị phong 
hóa mạnh tạo thành lớp vỏ phong hóa dày. Trong 
đó, các ion REE³⁺ được hấp phụ yếu trên bề mặt 
các khoáng sét như kaolinite, halloysite, gibbsite... 
(Xu et al., 2020). Do không tồn tại dưới dạng 
khoáng vật riêng biệt, đất hiếm trong các mỏ này 
rất khó quan sát bằng kính hiển vi, và sự phân bố 
của chúng chịu chi phối bởi các yếu tố địa hóa và 
môi trường rất phức tạp – gây thách thức lớn cho 
công tác thăm dò và đánh giá tài nguyên. 

Kriging, đặc biệt là Ordinary Kriging và Co-
Kriging, đã được sử dụng hiệu quả để nội suy hàm 
lượng REE trong không gian ba chiều, góp phần 
xây dựng mô hình khối mỏ và tính toán trữ lượng 
(Goovaerts, 1997; Journel & Huijbregts, 1978). 
Trong khi đó, Machine Learning với các mô hình 
như Random Forest, Support Vector Machine, 
Gradient Boosting và mạng nơron nhân tạo đang 
ngày càng được ứng dụng để: (1) phân tích tương 
quan giữa REE và các yếu tố địa hóa đi kèm 
(Al₂O₃, Fe₂O₃, pH, độ sâu...); (2) dự báo các khu 
vực có tiềm năng REE cao dựa trên dữ liệu bề mặt; 
(3) xây dựng bản đồ triển vọng khoáng sản; (4) đề 
xuất vị trí lấy mẫu tối ưu nhằm tiết kiệm chi phí 
khảo sát (Carranza, 2022; Li et al., 2023). 

Sự kết hợp giữa Kriging (khai thác tính liên tục 
trong không gian) và Machine Learning (khai thác 
quan hệ phi tuyến trong dữ liệu) đã tạo nên một 
phương pháp tích hợp mạnh mẽ, cho phép mô 
hình hóa tốt hơn sự phân bố đất hiếm trong lớp 
phong hóa, đồng thời nâng cao hiệu quả của công 
tác thăm dò, phân vùng triển vọng và đánh giá tài 
nguyên. 

Trong bối cảnh dữ liệu địa chất ngày càng 
phong phú và nhu cầu về tài nguyên chiến lược 
như đất hiếm tiếp tục gia tăng, việc tích hợp các 
công cụ phân tích hiện đại như Machine Learning 
và Kriging đang mở ra một hướng tiếp cận mới 
hiệu quả và chính xác hơn trong nghiên cứu địa 
chất mỏ nói chung, và đặc biệt là đối với các mỏ 
đất hiếm hấp phụ ion một trong những loại hình mỏ 
có ý nghĩa quan trọng bậc nhất trong thế kỷ 21 
(Carranza, 2022; Xu et al., 2020). 
2. DỮ LIỆU VÀ PHƯƠNG PHÁP NGHIÊN CỨU 

Dữ liệu nghiên cứu bao gồm hai bảng chính: 
(1) bảng mẫu thực nghiệm gồm 30 điểm đo phân 
bố trên khu vực nghiên cứu thực nghiệm; (2) bảng 
dữ liệu mô phỏng gồm 10.000 điểm lưới đều nhau, 

phủ kín toàn bộ diện tích 10 km² (tương ứng 1 điểm 
trên mỗi ô vuông 100 m²). Mỗi điểm dữ liệu đều có 
thông tin về tọa độ không gian (X, Y), hàm lượng 
tổng đất hiếm (REE_sum), chiều dày thân quặng, 
mật độ đá (rock density), và diện tích block (block 
area). 

Trong nghiên cứu thực nghiệm này, các mô 
hình Random Forest (RF) và Support Vector 
Machine (SVM) đã được xây dựng và huấn luyện 
trên tập dữ liệu mẫu nhằm mục tiêu phân loại và 
xác định các vùng có triển vọng quặng đất hiếm 
dựa trên chỉ tiêu chính là hàm lượng REE_sum. 
Các mô hình học máy như RF và SVM đã được 
chứng minh là hiệu quả trong phân vùng triển vọng 
khoáng sản và xử lý dữ liệu địa hóa đa biến 
(Carranza, 2022; Li et al., 2023; Zuo, 2017). Hiệu 
suất mô hình được đánh giá bằng các chỉ số như 
độ chính xác, AUC và ma trận nhầm lẫn, trước khi 
áp dụng cho bộ dữ liệu mô phỏng để xây dựng bản 
đồ phân vùng triển vọng. 

Song song với đó, nội suy địa thống kê 
Ordinary Kriging được thực hiện trên tập dữ liệu 
mẫu để ước lượng phân bố không gian của hàm 
lượng REE_sum. Phương pháp Kriging đã được 
ứng dụng rộng rãi và được xem là tiêu chuẩn trong 
mô hình hóa địa hóa không gian (Goovaerts, 1997; 
Journel & Huijbregts, 1978). Kết quả từ Kriging 
cung cấp cơ sở để so sánh và hiệu chỉnh kết quả 
từ mô hình học máy, đồng thời hỗ trợ trong việc 
xác định các khối quặng có giá trị kinh tế tiềm năng. 

Việc tích hợp Kriging và các mô hình học máy 
giúp tăng độ chính xác trong xác định vùng khoáng 
hóa giàu đất hiếm, đồng thời tối ưu hóa quá trình 
thăm dò và xây dựng mô hình địa chất 3D có độ tin 
cậy cao (Zuo, 2017; Carranza, 2022). 
2.1. Biểu đồ thống kê hàm lượng REE toàn bộ 
vùng 

a. Biểu đồ Histogram hàm lượng REE_sum 
Dạng phân bố: Histogram thể hiện phân bố 

lệch trái, với cực đại nằm trong khoảng 160–170 
ppm, cho thấy phần lớn khu vực có hàm lượng 
REE_sum tập trung quanh mức trung bình này. 
Dạng phân bố lệch như vậy thường gặp trong các 
hệ thống khoáng hóa bị chi phối bởi điều kiện 
phong hóa không đồng đều (Zuo, 2017). 

Dải biến thiên: Hàm lượng REE_sum trải rộng 
từ ~100 ppm đến hơn 240 ppm, phản ánh sự biến 
thiên đáng kể về mặt địa hóa điều đặc trưng cho 
các hệ thống phong hóa sâu phát triển trên đá mẹ 
có thành phần REE khác nhau (Xu et al., 2020). 

Sự thiếu cân đối: Sự lệch trái nhẹ có thể do sự 
hiện diện của các vùng dị thường giàu REE cục bộ, 
trong khi phần lớn diện tích vẫn có hàm lượng thấp 
hơn mức cực đại. Đây là đặc điểm thường thấy 
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tạp giữa các biến địa chất điều mà các phương 
pháp truyền thống khó nhận diện (Grunsky et al., 
2009; Li et al., 2023). 

Mỏ đất hiếm dạng hấp phụ ion là kiểu mỏ đặc 
trưng cho các vùng nhiệt đới ẩm, nơi các đá giàu 
đất hiếm như granitoid, rhyolite, syenite... bị phong 
hóa mạnh tạo thành lớp vỏ phong hóa dày. Trong 
đó, các ion REE³⁺ được hấp phụ yếu trên bề mặt 
các khoáng sét như kaolinite, halloysite, gibbsite... 
(Xu et al., 2020). Do không tồn tại dưới dạng 
khoáng vật riêng biệt, đất hiếm trong các mỏ này 
rất khó quan sát bằng kính hiển vi, và sự phân bố 
của chúng chịu chi phối bởi các yếu tố địa hóa và 
môi trường rất phức tạp – gây thách thức lớn cho 
công tác thăm dò và đánh giá tài nguyên. 

Kriging, đặc biệt là Ordinary Kriging và Co-
Kriging, đã được sử dụng hiệu quả để nội suy hàm 
lượng REE trong không gian ba chiều, góp phần 
xây dựng mô hình khối mỏ và tính toán trữ lượng 
(Goovaerts, 1997; Journel & Huijbregts, 1978). 
Trong khi đó, Machine Learning với các mô hình 
như Random Forest, Support Vector Machine, 
Gradient Boosting và mạng nơron nhân tạo đang 
ngày càng được ứng dụng để: (1) phân tích tương 
quan giữa REE và các yếu tố địa hóa đi kèm 
(Al₂O₃, Fe₂O₃, pH, độ sâu...); (2) dự báo các khu 
vực có tiềm năng REE cao dựa trên dữ liệu bề mặt; 
(3) xây dựng bản đồ triển vọng khoáng sản; (4) đề 
xuất vị trí lấy mẫu tối ưu nhằm tiết kiệm chi phí 
khảo sát (Carranza, 2022; Li et al., 2023). 

Sự kết hợp giữa Kriging (khai thác tính liên tục 
trong không gian) và Machine Learning (khai thác 
quan hệ phi tuyến trong dữ liệu) đã tạo nên một 
phương pháp tích hợp mạnh mẽ, cho phép mô 
hình hóa tốt hơn sự phân bố đất hiếm trong lớp 
phong hóa, đồng thời nâng cao hiệu quả của công 
tác thăm dò, phân vùng triển vọng và đánh giá tài 
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Trong bối cảnh dữ liệu địa chất ngày càng 
phong phú và nhu cầu về tài nguyên chiến lược 
như đất hiếm tiếp tục gia tăng, việc tích hợp các 
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2.1. Biểu đồ thống kê hàm lượng REE toàn bộ 
vùng 

a. Biểu đồ Histogram hàm lượng REE_sum 
Dạng phân bố: Histogram thể hiện phân bố 

lệch trái, với cực đại nằm trong khoảng 160–170 
ppm, cho thấy phần lớn khu vực có hàm lượng 
REE_sum tập trung quanh mức trung bình này. 
Dạng phân bố lệch như vậy thường gặp trong các 
hệ thống khoáng hóa bị chi phối bởi điều kiện 
phong hóa không đồng đều (Zuo, 2017). 

Dải biến thiên: Hàm lượng REE_sum trải rộng 
từ ~100 ppm đến hơn 240 ppm, phản ánh sự biến 
thiên đáng kể về mặt địa hóa điều đặc trưng cho 
các hệ thống phong hóa sâu phát triển trên đá mẹ 
có thành phần REE khác nhau (Xu et al., 2020). 

Sự thiếu cân đối: Sự lệch trái nhẹ có thể do sự 
hiện diện của các vùng dị thường giàu REE cục bộ, 
trong khi phần lớn diện tích vẫn có hàm lượng thấp 
hơn mức cực đại. Đây là đặc điểm thường thấy 

trong các mỏ đất hiếm hấp phụ ion phân bố phân 
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b. Biểu đồ Boxplot hàm lượng REE_sum 
Tầm giá trị (range): Boxplot cho thấy khoảng 

biến thiên chính từ 140–190 ppm, với: Q1: ~150 
ppm; Trung vị: ~165 ppm; Q3: ~180 ppm 

Outlier: Không ghi nhận điểm ngoại lai rõ rệt 
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c. Bản đồ phân bố REE theo không gian 
 Phân bố không gian: Hàm lượng REE_sum 
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thuật tương đương như hồi quy theo quá trình 
Gauss hay còn gọi là một phương pháp hồi quy 
không tham   số (Gaussian Process Regression) 
được thực hiện tốt (Goovaerts, 1997; Cressie, 
1993). 

d. Biểu đồ Histogram mật độ (Density)  
Phân bố gần đồng đều: Mật độ đá dao động 

trong khoảng 1.2–2.2 g/cm³, không có đỉnh nổi bật 
rõ ràng. Điều này phản ánh sự hiện diện của nhiều 
loại đá nền (granit phong hóa, ryolit, sét...), nhưng 
không có loại nào chiếm ưu thế tuyệt đối phù hợp 
với các vùng phong hóa trên nền đá magma axit 
(Castor & Hedrick, 2006). 

Ứng dụng: Mật độ là tham số quan trọng trong 
việc tính khối lượng thân quặng từ thể tích, và đóng 
vai trò thiết yếu trong các mô hình tài nguyên dạng 
block 3D. Việc đánh giá phân bố mật độ là một 
bước quan trọng để đảm bảo độ chính xác trong 
tính tài nguyên (Journel & Huijbregts, 1978; 
Carranza, 2022). 

2.2. Mô hình Random Forest (RF) và Support 
Vector Machine (SVM) 

Cả hai mô hình Random Forest (RF) và 
Support Vector Machine (SVM) đều được tạo dựng 

nhằm phân loại xác suất triển vọng khoáng sản 
theo hàm lượng REE_sum từ tập mẫu thử nghiệm 
gồm 30 điểm.  

Sau khi được tạo dựng, mô hình được áp dụng 
lên lưới 10.000 điểm để tạo bản đồ phân vùng triển 
vọng. Đầu ra là xác suất (0 đến 1) thể hiện mức độ 
tiềm năng khoáng sản tại mỗi điểm. RF: là mô hình 
phân loại Ensemble (mô hình kết hợp), mạnh trong 
xử lý quan hệ phi tuyến và nhiễu. SVM: sử dụng 
siêu mặt phân cách tối ưu, nhạy cảm với biên phân 
loại nhưng có thể thiếu ổn định khi dữ liệu phân bố 
phức tạp. 

a. Phân tích bản đồ vùng triển vọng theo RF 
Dạng phân bố: RF cho ra bản đồ có dạng khối 

rõ ràng, vùng triển vọng cao (màu đỏ đậm, xác suất 
>0.7) tập trung chủ yếu ở khu vực trung tâm bản 
đồ. Tính mượt: Bản đồ RF thể hiện vùng chuyển 
tiếp rõ ràng giữa vùng triển vọng cao – trung bình 
– thấp, phản ánh khả năng phân biệt mạnh và ổn 
định với dữ liệu phân tán. Biên xác suất rõ ràng: 
Có sự phân lớp gần ranh giới thể hiện việc RF tận 
dụng tốt các đặc trưng địa hóa, mật độ, chiều dày 
để tách vùng. Như vậy, mô hình RF cho kết quả có 
tính mạch lạc và ổn định cao, phù hợp với tính chất 
dữ liệu địa chất phong hóa phức tạp. 

 
Hình 1. Biểu đồ thống kê hàm lượng REE           

toàn bộ vùng 

b. Phân tích bản đồ vùng triển vọng theo SVM 
Dạng phân bố: SVM tạo ra bản đồ phân bố 

vùng triển vọng tương đối phân tán hơn, vùng có 
xác suất cao (>0.7) ít hơn và phân bố loang lổ, tập 
trung phần nào ở giữa. 

Biên không rõ ràng: Không gian chuyển tiếp 
giữa vùng triển vọng cao và thấp mờ nhạt hơn, có 
hiện tượng rối mô hình ở rìa vùng khảo sát biểu 
hiện của việc SVM có thể bị ảnh hưởng bởi dữ liệu 
ít hoặc không đại diện ở biên. 
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Phân giải không gian kém hơn RF: Có vẻ SVM 
hoạt động kém hiệu quả hơn trong trường hợp có 
nhiễu tự nhiên và phân bố phi tuyến – đặc trưng 
của dữ liệu địa chất. 

Như vậy, mô hình SVM phản ánh các khu vực 
có triển vọng nhưng thiếu tính ổn định và mạch lạc 
khi so với RF. Cần điều chỉnh kernel hoặc tăng số 
điểm mẫu nếu muốn cải thiện hiệu suất. 

Tham số kỹ thuật mô hình RF và SVM: Mô hình 
Random Forest (RF) sử dụng n = 500 cây, giới hạn 
độ sâu max_depth = 10, và kiểm định chéo 5-fold 
để tránh overfitting. Mô hình Support Vector 
Machine (SVM) áp dụng RBF kernel (γ = 0.1, C = 
1.0) nhằm tối ưu phân tách phi tuyến. Hiệu suất 
được đánh giá qua AUC = 0.91 (RF) và AUC = 0.86 

(SVM), F1-score = 0.88 và 0.81 tương ứng, cho 
thấy độ chính xác cao khi phân vùng triển vọng dựa 
trên REE_sum. 

Bản đồ chồng lớp mang lại tổng quan đa chiều 
khi so sánh và tích hợp kết quả từ hai thuật toán 
ML khác nhau: 

Vùng đỏ (cả hai mô hình đồng thuận) là trọng 
tâm để đề xuất giới hạn mỏ tiềm năng. 

Vùng xanh và vàng cho thấy độ linh hoạt và sự 
khác biệt trong cách hai mô hình xử lý dữ liệu, có 
thể khai thác để xác định biên mỏ và hướng mở 
rộng. 

Vùng xám là phần ít ưu tiên, giúp tiết kiệm chi 
phí trong giai đoạn khoan thăm dò ban đầu. 

 
Hình 2. Minh họa cho phần Mô hình Machine Learning (RF & SVM) 

 
Hình 3. Bản đồ vùng triển vọng chồng lớp 2 mô hình RF và SVM 
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2.3. Phân tích nội suy không gian bằng phương 
pháp Kriging 

Trong nghiên cứu này, phương pháp nội suy 
địa thống kê Kriging đã được áp dụng nhằm ước 
lượng phân bố không gian của hàm lượng đất hiếm 
tổng (REE_sum) trên toàn bộ khu vực khảo sát có 
diện tích 10 km². Để nâng cao khả năng mô hình 
hóa và tăng độ ổn định trong nội suy, dữ liệu 
REE_sum được chuyển đổi logarit theo công thức: 

log( _ 1)Z REE sum=+  
Việc biến đổi logarit nhằm giảm thiểu ảnh 

hưởng của các giá trị ngoại lệ và giúp dữ liệu gần 
với phân bố chuẩn điều kiện cần thiết để phương 
pháp Kriging hoạt động hiệu quả. 

2.3.1. Phương pháp Kriging triển khai 

Hồi quy theo quá trình Gauss (GPR) là một 
phương pháp hồi quy phi tham số, được xem như 
một dạng mở rộng của phương pháp Kriging 
truyền thống. Trong phương pháp này, mô hình giả 
định rằng toàn bộ không gian phân bố của hàm 
lượng nguyên tố đất hiếm (REE) tuân theo một quá 
trình ngẫu nhiên có phân phối chuẩn. 

Hàm nhân (kernel) được lựa chọn trong nghiên 
cứu là hàm cơ sở xuyên tâm (Radial Basis 
Function – RBF), còn gọi là hàm Gaussian, nhằm 
phản ánh tính liên tục và mượt mà của quá trình 
phân bố địa hóa. Hàm nhân này đóng vai trò xác 
định mức độ tương quan giữa các điểm dữ liệu, từ 
đó giúp mô hình đưa ra các dự đoán chính xác hơn 
và đồng thời đánh giá được mức độ bất định tại 
từng vị trí dự đoán. 
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Trong đó: xi, xj: vị trí không gian; ℓ: tham số điều 
chỉnh độ trơn mịn (length-scale), liên quan trực tiếp 
đến bán kính tương quan không gian. 

2.3.2. Bản đồ kết quả nội suy (log-scale) 

Kết quả nội suy được thể hiện trên bản đồ với 
thang màu log (REESUM + 1). Từ bản đồ có thể 
rút ra các nhận định sau: Vùng trung tâm bản đồ 
(X ~ 5000 m, Y ~ 5000 m) có giá trị log cao nhất 
(tương ứng REE_sum thực tế cao nhất), phù hợp 
với các vùng triển vọng xác định từ mô hình RF và 
SVM. Hàm lượng REE_sum giảm dần từ trung tâm 
ra rìa, thể hiện gradient rõ rệt và cấu trúc phân bố 
kiểu tâm lan tỏa điển hình cho các mỏ đất hiếm 
dạng hấp phụ ion hình thành do phong hóa tập 

trung trên đá mẹ giàu REE. Bản đồ có độ mượt 
cao, không xuất hiện nhiễu hoặc mô hình hóa quá 
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đa mà các điểm vẫn còn liên quan thống kê; Sill: 
giá trị bán phương sai ổn định khi khoảng cách lớn 
hơn range; Nugget: thấp, phản ánh dữ liệu có độ 
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Phương pháp Kriging, với cấu hình Gaussian 
Process Regression và RBF kernel, đã cho kết quả 
nội suy mượt, phù hợp với phân bố thực tế của 
REE_sum, đặc biệt là sau khi chuyển đổi logarit. 
Sự nhất quán giữa bản đồ nội suy và các mô hình 
học máy (RF, SVM) càng củng cố độ tin cậy của 
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2.3.4. Tính tài nguyên theo block và mô hình 3D 

Để đánh giá tiềm năng khai thác và phân bố tài 
nguyên đất hiếm (REE) một cách trực quan và định 
lượng, khu vực khảo sát (10 km²) đã được chia 
thành 400 ô vuông block kích thước 500m×500m. 
Trên cơ sở dữ liệu nội suy hàm lượng REE, chiều 
dày thân quặng và mật độ đá tại mỗi điểm, khối 
lượng tài nguyên được tính toán theo từng block 
thông qua công thức: 

6=A 10REET h C −  
Trong đó:  
TREE: khối lượng REE (tấn) trong block 
A: diện tích block (m2), ở đây là 500 x 500 = 

250,000 m2 
h: chiều dày thân quặng trung bình trong block (m) 
ρ: mật độ đá trung bình trong block (g/cm3) 
C: hàm lượng REE_sum trung bình trong block 

(ppm = mg/kg) 
10-6: hệ số chuyển đổi từ ppm x m3 xg/cm3→ 

tấn 
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Hình 4. Minh họa cho phần Phân tích nội 

suy không gian bằng Kriging 
a. Kết quả tổng hợp toàn vùng 

Tổng tài nguyên REE ước tính: ~11.300 tấn 
Khối lượng quặng nguyên khai (đá chứa 

quặng): ~95 triệu tấn 
Mức hàm lượng trung bình toàn vùng: dao 

động chủ yếu trong khoảng 150–180 ppm 
Các thông số này cho thấy khu vực nghiên cứu 

có tiềm năng tài nguyên đáng kể, đặc biệt trong bối 
cảnh nhu cầu REE toàn cầu tăng cao. 

b. Phân bố tài nguyên theo không gian (bản đồ 
block) 

Bản đồ thể hiện rõ rệt sự phân bố không gian 
của tài nguyên REE theo từng block, với các ô 
vuông màu đại diện cho tổng tấn REE trong mỗi 
block. 

Các block có giá trị cao nhất (màu vàng sáng, 
>500 tấn/block) tập trung tại khu vực trung tâm bản 
đồ trùng khớp với các vùng có: Hàm lượng REE 
cao (từ nội suy Kriging). Được cả hai mô hình RF 
và SVM xác định là vùng triển vọng cao. Khu vực 
rìa (màu tím, <300 tấn/block) có tài nguyên thấp 
hơn, chủ yếu do chiều dày thân quặng mỏng hơn 
và/hoặc hàm lượng thấp hơn. 

Phân bố này phản ánh cấu trúc địa chất khoáng 
hóa mang tính hướng tâm đặc trưng của các mỏ 
đất hiếm dạng hấp phụ ion phong hóa sâu, thường 
tập trung quanh khu vực đỉnh khối đá mẹ granit 
hoặc ryolit giàu REE. 

c. Mô hình tài nguyên theo block  
Dựa trên dữ liệu theo block, một mô hình 3D tài 

nguyên đã được dựng, giúp minh họa sự thay đổi 
khối lượng REE theo chiều sâu và không gian ba 
chiều. Mô hình này hỗ trợ: 

+ Lập kế hoạch khoan thăm dò bổ sung theo 
chiều sâu 

+ Định ranh giới khai trường mỏ 
+ Xác định vị trí khai thác ưu tiên, đặc biệt tại 

các khối có tích lũy tài nguyên lớn và phân bố tập 
trung 

Việc chia block tính tài nguyên kết hợp với nội 
suy địa hóa và các mô hình học máy đã cung cấp 
cái nhìn chi tiết và định lượng về tiềm năng đất 
hiếm trong khu vực nghiên cứu. Kết quả cho thấy 
phần lớn tài nguyên tập trung ở vùng trung tâm, 
với khả năng khai thác hiệu quả cao. Mô hình 3D 
đóng vai trò quan trọng trong việc chuyển từ đánh 
giá tiềm năng sang quy hoạch khai thác thực tế. 

2.3.5. Phân tích mô hình khối 3D tài nguyên 
REE (500 m × 500 m) 

Mô hình khối 3D thể hiện sự phân bố tài nguyên 
đất hiếm (REE) theo từng block có kích thước 
500 m × 500 m, trên toàn khu vực khảo sát diện 
tích 10 km². Trục đứng (trục Z) thể hiện tổng tấn 
REE trong mỗi block, là kết quả từ phép tính: 

6=A 10REET h C −  
Trong đó:  
A = 250,000 m2 

 
Hình 5. Bản đồ tài nguyên REE theo block 

500m x 500m 

h: chiều dày thân quặng (m) 
ρ: mật độ (g/cm3) 
C: hàm lượng REE_sum (ppm) 
* Nhận xét từ mô hình khối 3D:  
a. Phân bố không gian ba chiều rõ ràng 
Các cột có chiều cao lớn nhất (màu vàng sáng, 

>500 tấn REE/block) tập trung rõ rệt tại khu vực 
trung tâm, với tọa độ xấp xỉ (X ~ 5000 m, Y ~ 5000 
m). Chiều cao các cột giảm dần về phía rìa, thể 
hiện mức độ tích lũy tài nguyên suy giảm theo 
khoảng cách ra ngoài tâm mỏ đặc trưng phổ biến 
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của mỏ đất hiếm kiểu hấp phụ ion trên vỏ phong 
hóa. Do vậy, trung tâm vùng khảo sát là nơi có mật 
độ tài nguyên cao nhất, cần ưu tiên khoan thăm dò 
xác minh và tính toán trữ lượng chi tiết. 

b. Độ mượt và tính liên tục tốt 
Mô hình cho thấy sự chuyển tiếp mượt mà giữa 

các khối, không có sự đột biến hoặc nhiễu rõ rệt, 
nhờ vào quá trình: Nội suy mượt bằng Kriging và 
phân chia block đều đặn 500 m × 500 m. Điều này 
phản ánh sự ổn định địa chất và phân bố liên tục 
của REE trong vỏ phong hóa một đặc điểm phù 
hợp với kiểu mỏ hấp phụ ion phát triển trên địa hình 
bồi tụ thấp, rộng. Do vậy, khối tài nguyên có hình 
thái tròn và dày ở tâm, thuận lợi cho khai thác dạng 
lộ thiên hoặc bán lộ thiên. 

c. Tiềm năng kinh tế và ứng dụng 
Với các khối block đạt >500 tấn/block, nếu tính 

cho 1 ha (~2 block), có thể đạt ~1.000 tấn REE – 
là con số có giá trị thương mại cao nếu mức cắt 
cho phép. 

Mô hình 3D giúp: 
+ Lập giới hạn thân quặng ban đầu 
+ Lập kế hoạch khoan xác minh chi tiết theo 

chiều sâu 
+ Phục vụ đánh giá kinh tế mỏ, phân vùng khai 

thác theo từng giai đoạn 
Như vậy, mô hình khối 3D tài nguyên REE theo 

block 500 m không chỉ phản ánh sự phân bố không 
gian tài nguyên một cách trực quan và chính xác, 
mà còn hỗ trợ đánh giá nhanh vùng triển vọng khai 
thác. Các block trung tâm đạt sản lượng cao và 
phân bố liên tục là đối tượng ưu tiên trong các 
bước lập kế hoạch khai thác thăm dò chi tiết và tính 
trữ lượng (Hình 6). 

3. KÊT QUẢ VÀ THẢO LUẬN 

3.1. Đặc điểm phân bố hàm lượng REE và cơ 
sở nội suy 

Kết quả thống kê mô tả hàm lượng đất hiếm 
tổng (REE_sum) trên toàn vùng cho thấy giá trị 
phân bố không đồng đều, có xu hướng nghiêng trái 
nhẹ, với hàm lượng dao động chủ yếu từ 140 đến 
190 ppm và trung vị khoảng 165 ppm. . Bản đồ 
phân bố REE theo không gian (Hình 1) cho thấy 
khu vực trung tâm có hàm lượng cao nhất, phù hợp 
với cấu trúc mỏ kiểu phong hóa tập trung, phản ánh 
khả năng tích lũy ion REE trên khoáng sét trong 
môi trường địa hóa ổn định (Xu et al., 2020; Castor 
& Hedrick, 2006). 

 
Hình 6. Mô hình 3D tài nguyên REE theo 

block 500m x 500m 
Để đảm bảo tính chính xác và loại bỏ ảnh 

hưởng của phân bố lệch, dữ liệu REE đã được log-
transform và chuẩn hóa trước khi nội suy bằng 
phương pháp Kriging với kernel RBF. Phương 
pháp Kriging, vốn đã được chứng minh là kỹ thuật 
nội suy địa thống kê hiệu quả cho dữ liệu địa hóa 
(Goovaerts, 1997; Cressie, 1993), cho phép mô 
hình hóa phân bố REE rõ ràng, với tâm dị thường 
mạnh và gradient giảm dần về phía rìa (Hình 5). 
Điều này giúp phản ánh tốt cấu trúc không gian 
mượt mà và ổn định địa hóa, là tiền đề quan trọng 
cho việc thiết kế lưới lấy mẫu hoặc bố trí khoan chi 
tiết. Kết quả từ biểu đồ bán phương sai (variogram) 
cho thấy bán kính tương quan khoảng 2.500–
3.000 m, là khoảng cách tối ưu cho việc phân bố 
các điểm khoan (Journel & Huijbregts, 1978, 
Wackernagel, 2003, Webster & Oliver, 2007). 

3.2. Phân vùng triển vọng bằng Machine 
Learning 

Hai mô hình học máy là Random Forest (RF) 
(Breiman, 2001) và Support Vector Machine (SVM) 
(Vapnik, 1998) đã được huấn luyện từ tập mẫu 
thực nghiệm và áp dụng trên toàn vùng để xác định 
xác suất triển vọng theo hàm lượng REE_sum. 
Các mô hình này được lựa chọn vì khả năng khai 
thác các mối quan hệ phi tuyến giữa các biến đầu 
vào và kết quả đầu ra, đồng thời hoạt động tốt với 
dữ liệu rời rạc và quy mô nhỏ (Zuo, 2017; 
Carranza, 2022, Li & Liu, 2015). 

Kết quả phân vùng (Hình 2) cho thấy: RF tạo ra 
bản đồ có biên vùng triển vọng rõ nét, vùng trung 
tâm đạt xác suất cao nhất (>0.8), bao quanh bởi 
lớp chuyển tiếp. Trong khi đó, SVM cho phân bố 
loang hơn và phân tán, đặc biệt dễ nhiễu tại vùng 
biên phản ánh tính nhạy cảm với biên phân lớp và 
phân bố không đều của dữ liệu huấn luyện (Li et 
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al., 2023). Bản đồ chồng lớp kết quả (Hình 3) cho 
phép phân chia toàn vùng thành 4 cấp độ: (0) 
không triển vọng, (1) RF nhận, (2) SVM nhận, (3) 
cả hai mô hình cùng nhận. Vùng trung tâm được 
cả hai mô hình xác nhận là có triển vọng cao, thể 
hiện sự đồng thuận mô hình học máy, là cơ sở 
vững chắc để định hướng thăm dò thực địa tiếp 
theo (Carranza, 2022). 
3.3. Tính toán và mô hình hóa tài nguyên 

Trên cơ sở dữ liệu nội suy và phân vùng triển 
vọng, khu vực nghiên cứu đã được chia thành các 
block 500 m × 500 m để tính toán tài nguyên. Tổng 
tài nguyên REE ước tính đạt khoảng 11.300 tấn, 
với khối lượng quặng nguyên khai hơn 95 triệu tấn. 
Phương pháp tính dựa trên công thức khối lượng 
tích lũy từ diện tích, chiều dày, mật độ và hàm 
lượng REE cách tiếp cận chuẩn trong mô hình khối 
địa chất mỏ (Journel & Huijbregts, 1978). 

Khu vực trung tâm là vùng dị thường REE_sum 
cao, được xác nhận đồng nhất bởi cả RF, SVM và 
nội suy Kriging, phản ánh vùng tích tụ khoáng hóa 
chủ yếu. Mô hình khối 3D không chỉ giúp lượng hóa 
nhanh tài nguyên từng block, mà còn hỗ trợ trực 
quan hóa kết quả, tạo điều kiện thuận lợi cho thiết 
kế khai thác mỏ theo hướng lộ thiên hoặc bán lộ 
thiên (Carranza, 2022). 
3.4. Tích hợp đa phương pháp và giá trị ứng 
dụng 

Sự kết hợp giữa Kriging nội suy địa hóa, phân 
vùng Machine Learning, và tính tài nguyên theo 
block đã chứng minh hiệu quả cao trong mô hình 
hóa mỏ đất hiếm dạng hấp phụ ion. Trong đó: 
Kriging phản ánh tốt cấu trúc liên tục không gian và 
giúp dự báo phân bố REE theo hướng mượt và 
chính xác (Goovaerts, 1997);Random Forest  SVM 
giúp khai thác mối liên hệ phi tuyến đa chiều giữa 
các yếu tố như địa hóa, chiều dày thân quặng và 
mật độ đá (Zuo, 2017); Mô hình block 3D hỗ trợ 
định lượng tài nguyên, xác định khối quặng ưu tiên 
và xây dựng cơ sở khoa học cho khai thác mỏ. 

Đây là hướng tiếp cận hiện đại, phù hợp trong 
bối cảnh dữ liệu thực địa còn hạn chế và phân bố 
không đều vốn là đặc trưng phổ biến của các mỏ 
đất hiếm phong hóa tại vùng nhiệt đới, như ở Trung 
Quốc, Việt Nam và Myanmar (Xu et al., 2020; Li et 
al., 2023). Phương pháp này hoàn toàn có thể 

nhân rộng và áp dụng cho các khu vực có điều kiện 
tương tự. 
3.5. Hạn chế và hướng nghiên cứu tiếp theo 

Mặc dù các kết quả đạt được có độ tin cậy cao, 
nghiên cứu vẫn tồn tại một số hạn chế cần lưu ý: 

Số lượng điểm mẫu còn ít (30 điểm), chưa đủ 
để phản ánh đầy đủ tính biến thiên không gian của 
toàn khu vực; (2) Dữ liệu đầu vào chủ yếu đơn biến 
(REE_sum), chưa tích hợp đồng thời các biến địa 
hóa khác (Al₂O₃, Fe₂O₃, pH, độ sâu v.v.), do đó 
khả năng phân tích mối quan hệ đa chiều còn hạn 
chế. Trong giai đoạn nghiên cứu tiếp theo, cần: Mở 
rộng số điểm mẫu và phạm vi khảo sát, nhằm nâng 
cao độ phân giải không gian; Tích hợp thêm các 
biến địa hóa và khoáng vật học để cải thiện khả 
năng dự báo mô hình; Thử nghiệm và so sánh 
thêm các thuật toán Machine Learning tiên tiến 
như Gradient Boosting, XGBoost, Artificial Neural 
Network (ANN) nhằm tăng độ chính xác và khả 
năng khái quát hóa; Tích hợp dữ liệu 3D và viễn 
thám, hướng tới xây dựng mô hình đa tầng cho các 
ion-adsorption rare earth deposits ở Việt Nam. 
4. KẾT LUẬN 

Nghiên cứu này đã tích hợp thành công Kriging 
và các mô hình học máy (machine learning 
models) để đánh giá tiềm năng mỏ đất hiếm hấp 
phụ ion (ion-adsorption rare earth deposits) trên cơ 
sở dữ liệu REE_sum. Kết quả chỉ ra vùng trung tâm 
có tiềm năng khoáng hóa cao, được cả RF và SVM 
đồng thuận xác định. Các mô hình đạt độ chính xác 
cao (AUC > 0.85), chứng tỏ khả năng ứng dụng tốt 
của phương pháp tích hợp này. Tuy nhiên, nghiên 
cứu vẫn có những hạn chế nhất định do số điểm 
mẫu ít và dữ liệu đơn biến, cần được mở rộng và 
kiểm chứng thêm. Kết quả nghiên cứu không chỉ 
mang ý nghĩa khoa học trong việc ứng dụng 
Machine Learning vào địa chất mỏ mà còn có giá 
trị thực tiễn cho công tác điều tra, đánh giá và quy 
hoạch khai thác tài nguyên đất hiếm ở Việt Nam. 
Hướng nghiên cứu tiếp theo sẽ tập trung vào mở 
rộng dữ liệu, tích hợp thêm các biến địa hóa và thử 
nghiệm các mô hình nâng cao như Gradient 
Boosting, ANN để tối ưu hóa khả năng dự báo và 
tăng tính khách quan của mô hình  
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ABSTRACT 
Ion-adsorption type rare earth element (REE) deposits are of strategic significance and commonly 

occur within deeply weathered profiles in tropical humid regions. However, evaluating their resource 
potential and delineating prospective zones remain challenging due to complex spatial variability and 
limited sampling data. In this study, modern techniques including geostatistical interpolation (Kriging) and 
machine learning models such as Random Forest (RF) and Support Vector Machine (SVM) were 
integrated to analyze geochemical data and model the spatial distribution of REE across a 10 km² study 
area. 
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Based on 30 field sampling points and a simulated grid of 10,000 locations, the RF and SVM models 
were trained to classify prospective zones using REE_sum concentrations. The classification 

 results revealed that the central area exhibited the highest probability of REE enrichment, consistently 
identified by both RF and SVM models. Kriging interpolation (on a log-transformed scale) showed a clear 
geochemical gradient with REE concentrations decreasing outward from the center, demonstrating strong 
spatial continuity. The study area was further subdivided into 500 m × 500 m blocks for resource 
estimation, resulting in a total calculated resource of approximately 11,300 tonnes of REE, predominantly 
concentrated in the central blocks. A 3D block model was constructed to support spatial visualization and 
aid in future mine planning. 

This study demonstrates the effectiveness of integrating Kriging and machine learning models for 
spatial modeling and resource assessment of ion-adsorption rare earth deposits. Beyond its 
methodological contribution, the study provides scientific and practical significance by establishing a data-
driven workflow applicable to similar REE_sum-based investigations in Vietnam, supporting strategic 
resource planning. 
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