Xác định dấu hiệu chứa quặng sắt từ dữ liệu ảnh vệ tinh Sentinel-2 MCI

https://mij.hoimovietnam.vn/en/archives?article=200218
  • Affiliations:

    1 Military Technical Academy
    2 Hanoi University of Mining and Geology

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 26th-May-2019
  • Revised: 21st-Dec-2019
  • Accepted: 10th-Apr-2020
  • Online: 30th-Apr-2020
Pages: 86 - 90
Views: 12
Downloads: 0
Rating: , Total rating: 0
Yours rating

Abstract:

The Landsat and ASTER data are the most widely and effectively used multispectral data for mapping minerals, including iron oxide. However, due to the low spatial resolution and the long temporal resolution, Landsat and Aster data are not really effective in detailed scale studies. This paper presents the result of classification of iron oxide minerals area in Thai Nguyen province from Sentine!-2 MS satellite image. With high spatial resolution (up to 10m), short temporal resolution (5 days) and provided free of charge, Sentinel-2 MSI data is a valuable source in detecting and mapping minerals.

How to Cite
Trinh, H.Le and Vuong, K.Trong 2020. Xác định dấu hiệu chứa quặng sắt từ dữ liệu ảnh vệ tinh Sentinel-2 MCI (in Vietnamese). Mining Industry Journal. XXIX, 2 (Apr, 2020), 86-90. .
References

1. Trịnh Lê Hùng (2014). ứng dụng viễn thám trong phát hiện các hợp phần chứa sắt và khoáng vật sét trên cơ sở kỹ thuật Crosta, Tạp chí Công nghiệp Mỏ, số 01, trang 36-40.

2. Clark R.N., Swayze G.A., Wise R., Livo K.E., Hoefen T.M., Kokaly R.F„ Sutley S.J. (1989). USGS Digital Spôctral library, USGS Open file Rep.

3. Hu B., Xu Y„ Wan B„ Wu X., Ỳi G. (2018). Hydrothermally altered mineral mapping using synthetic application of Sentinel-2A MSI, ASTER and Hyperion data in the Duolong area, Tibetan Plateau, China, Ore Geology Revievvs, 101, 384-397.

4. Kauíman H. (1988). Mineral exploration along the Agaba-Levant structure by use of TM-data concepts, Processing and resuỉts, International Journal of Remote Sensing, 9: 1630-1658.

5. Lobo F., Souza-Filho p., Novo E., Carlos F., Barbosa c. (2018) Mapping mining areas in the Braziỉian Amazon using MS!/Sentinel-2 imagery (2017), Remote Sensìng7l0, 1178, 15 pp.

6. Loughlin w.p. (1991). Principal component analysis for alteration mapping, Photogrammetric Engineering and Remote Sensing, 57(g), 1163-1169

7. Mahboob M., Genc B., Celik T., Ali s. Atìf I. (2019). Mapping hydrothermal minerals using remotely sensed retleõtance spectroscopy data from Landsat, Journal of the Southern Aírican Institute of Mining and Metallugy, Vol.119(3), 279-289.

8. Mielke c., Bosche N., Rogass c., Segl K., Cauert c., Kauímann H. (2014). Potential applications of the Sentinel-2 multispectral sensor and the Enmap hyperspectral sensor in mineral exploration, EARSeL e Proceedings 13, 93-102.

9. Pour A.B., Park T., Park Y., Hortg J,, Zoheir B,, Pradhan B., Ayoobi i., Hashim M. (2018). Application of Multi-Sensor Satellite Data for Exploration of Zn-Pb Sulfide Mineralization in the Franklinian Basin, North Greenland, Remdte Sensing, 10(8), 1186, doi:10.3390/rs10081186.

10. Van der Meer F.D., van der Werff H.M.A., van Ruitenbeek F.J.A. (2014). Potential of ESA’s Sentinel-2 for geological applications, Remqte Sensing of Environment, 148,124-133.

Other articles