Nghiên cứu ảnh hưởng cùa tốc độ biến dạng đến hệ số tăng động DIF của bê tông sử dụng trong xây dựng công trinh ngầm

- Authors: Dang Van Kien, Vo Trong Hung
Affiliations:
Hanoi University of Mining and Geology
- *Corresponding:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Received: 10th-June-2020
- Revised: 26th-May-2020
- Accepted: 10th-June-2020
- Online: 30th-June-2020
- Section: Underground and Mining Construction
Abstract:
The dynamic increase factor (DIF), i.e. the ratio of the dynamic to static strength, is normally reported as function of strain rate. Knowledge of the DIF is of significant importance in the design and analysis of structures for explosives safety. DIF curves for concrete are typically based on limited data. This data support the dynamic increase factor (DIF) being a bilinear function of the strain rate in a log-log plot. From the results of dynamic experiments SHPB on concrete, this study also formulated an approximate formula to determine the approximate DIF value according to the strain rate with the groups of static compressive strength M300, M400 and M600.

1. Đặng Văn Kiên, Sử dụng thí nghiệm động Split Hopkinson pressure bar để xác định các thông số động của đá. Tuyển tập các công trình khoa học kỷ niệm 50 năm thành lập Bộ môn "Xây dựng Công trình ngầm và Mỏ" 1996-2016. NXB Khoa họcTự nhiên và Công nghệ. Tr. 179-181.
2. Ngô Ngọc Thủy, Vũ Đình Lợi, Đặng Vản Kiên,Võ Trọng Hùng. Xác định các thông số động của bê tông chế tạo từ san hô biển bằng thí nghiệm động split hopkinson pressure bar. Tạp chí Công nghìẹp Mỏ. số 2. 2020. Tr. 19-26.
3. Grate, D. L., Park, S. W., and Zhou, M. Dynamic behavior of concrete at high strain rates and pressures: I. experimental characterization. International Journal of Impact Engineering 25 [9], 869-886.2001.
4. Comite Euro-International du Beton-Federation Internationale de la Precontrainte. CEB-FIP Model Code 90 Redwood Books, Trowbridge, Wiltshire, Great Britain. 1990.
5. Comite Euro-International du Beton. Concrete Structures under Impact and Impulsive Loading. CEB Bulletin 187, Lausanne, Switzerland, August 1988.
6. Reinhardt, H.W. Strain Rate Effects on the tensile Strength of Concrete as Predicted by Thermo-dynamics and Fracture Mechanics Models. Cement Based Composites: Strain Rate Effects on Fracture, S. Mindess and S.P. Shah, editors, December 1985, pp. 1-13.
7. Weerheijm, J., Reinhardt, H.W. Modelling of Concrete Fracture under Dynamic Tensile Loading. Fracture of Concrete and Rock - Recent Developments (S.P. Shah, S.E. Swartz and B. Barr, editors), 1989, pp. 721-728.
8. L. Javier Malvar, John E. Crawford. Dynamic increase factors for concrete. Twenty-Eighth DDESB Seminar. Orlando, FL, August 98.
9. Mellinger, F.M., Birkimer, D.L. Measurement of Stress and Strain on Cylindrical Test Specimens of Rock and Concrete under Impact Loading. Technical Report 4-46, U.S. Army Corps of Engineers, Ohio River Division Laboratories, Cincinnati, Ohio, April 1966, 71 pp.
10. McVay, M.K. Spall Damage of Concrete Structures, Technical Report SL-88-22, U.S. Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, June 1988.
11. John, R., Antoun, T., Rajendran, A.M. Effect of Strain Rate and Size on Tensile Strength of Concrete. Proceedings, 1991 APS Topical Conference on Shock Compression of Condensed Matter, Williamsburg, VA (Schmidt, S.C., Dick, R.D., Forbes, J.W., Tasker, D.G., editors), Elsevier Science Publishers, 1992, pp. 501-504.
12. Antoun, T.H. Constitutive/Failure Model for the Static and Dynamic Behaviors of Concrete Incorporating Effects of Damage and Anisotropy. Ph.D. Thesis, The University of Dayton, Dayton, Ohio, 1991, 230 pp.
13. Ross, C.A., Tedesco, J.W., Kuennen, S T. Effects of Strain Rate on Concrete Strength. ACI
Other articles