Research on application of deep learning technique with long short term memory model in the monitoring and forecasting system of coal spontaneous combustion temperature in underground mines

- Authors: Vinh The Nguyen 1, Duong Thuy Le Nguyen 1*, Dong Xuan Nguyen 1 Kien Hung Nguyen 2, Dung Danh Nguyen 2, Duong Hai Tran 2
Affiliations:
1 Vietnam Reseach Institute of Electronics, Informatics and Automation
2 Electronics and Automation Technology Development Company Limited
- *Corresponding:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Keywords: deep learning, online monitoring system, coal spontaneous соmbustion, long short term memory.
- Received: 22nd-Oct-2024
- Revised: 28th-Oct-2024
- Accepted: 2nd-Nov-2024
- Online: 1st-Feb-2025
Abstract:
Online monitoring and forecasting of coal seam temperature in underground mines with spontaneous combustion is an urgent issue that is currently receiving attention. In this paper, a method of building a model to forecast the coal spontaneously combustion temperature every hour for the next eight hours using a univariate Long Short Term Memory (LSTM) model is proposed. The parameters of the model are adjusted through tests suitable for the given problem. The monitoring system combined with this forecasting method contributes to improving production efficiency, labor safety, environmental protection and effective use of Vietnam coal resources.

[1]. Nguyễn Xuân Đồng và nnk (2024), Nghiên cứu thiết kế xây dựng hệ thống quan trắc trực tuyến và ứng dụng kỹ thuật lô-gic mờ trong cảnh báo hiện tượng than tự cháy mỏ hầm lò, Tạp chí Công nghiệp Mỏ; Số 6-24.
[2]. Viện Khoa học Công nghệ Mỏ (2014), Nghiên cứu đánh giá tính tự cháy của than và đề xuất các giải pháp kỹ thuật công nghệ phòng ngừa tự cháy ở các mỏ than hầm lò Việt Nam, Báo cáo tổng kết đề tài.
[3]. Automate Technology Co., Ltd. (2013), Cảm biến đo nhiệt độ đa điểm cho vỉa than, Xuzhou China Mining.
[4]. Ikram, B. A. O., Abdelhakim (2019), Deep Learning architecture for temperature forecasting in an IoT LoRa based system, In Proceedings of the 2nd International Conference on Networking, Information Systems & Security.
[5]. H.B. Sahu (2013), Forecasting Spontaneous Heating Susceptibility of Indian Coals Using Neuro Fuzzy System, https://link.springer.com/article/10.1007/s10706-013-9618-6.
[6]. Lim, B., & Zohren, S. (2020), Time Series Forecasting With Deep Learning: A Survey https://link.springer.com/chapter/10.1007/978-3-030-59338-4_19.
[7]. Manjula C. Belavagi, Girija Attigeri (2022), Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison, IEEE Access Volume 10.
[8]. Ran Vijay Kumar Singh (2019), Spontaneous Heating and Fire in Coal Mines, The 9th Asia-Oceania Symposium on Fire Science and Technology.
[9]. Yu Zheng (2019), Monitoring the spontaneous combustion of coal stack based on ZigBee and LabView, Journal of Physics Conference Series.
[10]. https://towardsai.net/p/machine-learning/machine-learning-standardization-z-score-normalizationwith- mathematics
Other articles