Application of the shear strength reduction method in the study and identification of slope plastic yield zone

- Authors: Phong Van Bui 1*, Hoang Van Nguyen 2, Huyen Thi Dang 1, Binh Thanh Nguyen 1, Dac Xuan Ngo 1
Affiliations:
1 Vietnam Institute of Geosciences and Mineral Resources, 67 Chien Thang street, Ha Noi, Vietnam
2 University of Warsaw, Krakowskie Przedmieście 26/28, Warsaw, Poland
- *Corresponding:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Received: 5th-Sept-2025
- Revised: 10th-Oct-2025
- Accepted: 15th-Oct-2025
- Online: 1st-Dec-2025
Abstract:
The variation in soil shear strength parameters leads to the formation of a plastic yield zone within a slope. In the post-deformation state, the material properties are altered and no longer remain intact as before; inter-particle bonds are broken, and the structure is destroyed. In this paper, the strength reduction method (SRM) is applied to identify the mechanism of formation, the development process, the potential displacement, as well as the precise location of the plastic yield zone along the slip surface of the slope. A 3D slope model is developed, analyzed, and used to calculate the factor of safety and delineate the plastic yield zone that indicates slope failure, The simulations were performed in Midas GTS NX, which integrates the shear strength reduction technique into its finite element method.
[1]. Zhang, J., Tang, W.H., Zhang, L.M., Huang, H.W. (2012). Characterising geotechnical model uncertainty by hybrid Markov Chain Monte Carlo simulation. Computers and Geotechnics, 43, 26–36. DOI: https://doi.org/10.1016/j.compgeo.2012.02.002

[2]. Rahardjo, H.; Leong, E.C.; Rezaur, R.B. (2002). Studies of rainfall-induced slope failures. Invited Lecture. National Seminar Slope 2000, 27 April 2002, Bandung, Indonesia. In Paulus P Rahardjo(edt.) Slope 2002.Proceedings of the National Seminar, Slope 2002. 15−29;

[3]. Bui, D.T., Ho, T.C., Biswajeet, P., Pham, B.T, Nhu, V.H., Inge, R. (2016). GIS-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with AdaBoost, Bagging, and MultiBoost ensemble frameworks. Environ Earth Sci 75, 1101. DOI: https://doi. org/10. 1007/s12665-016-5919-4

[4]. Cheng, Y.M., Lansivaara, T., Wei, W.B. (2007). Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Computers and Geotechnics, 34(3), 137–150. DOI: https://doi.org/10.1016/j.compgeo.2006.10.011

[5]. Wei, W.B., Cheng, Y.M., Li, L. (2009). Three-dimensional slope failure analysis by the strength reduction and limit equilibrium methods. Computers and Geotechnics, 36(1–2), 70–80. DOI: https://doi.org/10.1016/j.compgeo.2008.03.003

[6]. Sarma, S. (1973). Stability analysis of embankments and slopes. Geotechnique, 23 (3), 423–433. DOI: https://doi.org/10.1061/AJGEB6.0000903

[7]. Zienkiewicz, O.C., Humpheson, C., Lewis, R.W. (1975). Associated and non-associated viscoplasticity and plasticity in soil mechanics. Geotechnique, 25(4), 671–689. DOI: https://doi.org/ 10.1680/geot.1975.25.4.671

[8]. Liu, K., Wang, Y., Huang, M., Yuan, W. (2021). Postfailure analysis of slopes by random generalized interpolation material point method. International Journal of Geomechanics, 21(3), 04021015. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001953

[9]. Fellenius, W. (1927). Erdstatische Berechnungen mit Reibung und Kohasion. Ernst, Berlin (in German).

[10]. Bishop, A.W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1), 7–17.

[11]. Morgenstern, N.R., Price, V.E. (1965). The analysis of the stability of general slip surfaces. Geotechnique, 15(1), 79–93.

[12]. Spencer, E. (1967). A method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique, 17, 11–26.

[13]. Janbu, N. (1973). Slope stability computations. Embankment- Dam Engineering: Casagrande Volume, John Wiley & Sons, Inc., New York, 1973, pp. 47-86.

[14]. Dawson, E., Roth, W., Drescher, A. (1999). Slope stability analysis by strength reduction. Geotechnique, 49(6), 835–840. DOI:https://doi.org/10.1680/geot.1999.49.6.835

[15]. Sun, G., Cheng, S., Jiang, W., et al. (2016). A global procedure for stability analysis of slopes based on the Morgenstern-Price assumption and its applications. Computers and Geotechnics, 80, 97–106. DOI: https://doi.org/10.1016/j.compgeo.2016.06.014

[16]. Dyson, A.P., Griffiths, D.V. (2024). An efficient strength reduction method for finite element slope stability analysis. Computers and Geotechnics, 174 (5):106593. DOI: https://doi.org/10.1016/j.com pgeo.2024.106593

[17]. Châu Trường Linh & Nguyễn Thanh Quang (2021). Phân tích ổn định mái dốc nền đường bằng phương pháp cân bằng giới hạn và phần tử hữu hạn theo tiêu chuẩn Aashto – Lrfd. Tạp chí Khoa học và Công nghệ - Đại học Đà Nẵng, vol. 19, no. 4.2.

[18]. Nguyễn Quang Hùng & Trần Văn Quân (2020). Ứng dụng trí tuệ nhân tạo trong dự đoán sức chống cắt của đất sau biến dạng. Tạp chí Khoa học và Công nghệ Thủy Lợi số 60. 
Other articles






