Esearch to improve revocation efficiency for steel arch supports in mine tunnel with a cross-section of 9-15 m2

- Authors: Linh Khac Nguyen, Dinh Vu Dang, Phuc Quang Le
Affiliations:
Hanoi Hanoi University of Mining and Geology
- *Corresponding:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Keywords: Steel arch support, Tunnel, Efficiency
- Received: 21st-Apr-2024
- Revised: 25th-May-2024
- Accepted: 28th-May-2024
- Online: 30th-June-2024
Abstract:
In this study, a solution is presented to enhance the efficiency of the steel arch support removal process. This is achieved through the utilization of hydraulics and mechanical structures to create a combination propping equipment. The device supporting the dismantling of steel arch support consists of two parts: the front rack and the rear rack, which are linked and controlled to move by cylinders. The rear rack (has a structure similar to the hydraulic support gantry used in the coal mining tunnel, but the top beam is redesigned to be closest to the profile of the tunnel) includes a domed roof connected to the side beams by a hinge. Support equipment is controlled by cylinders, hydraulic cylinder support, and pillar base. The top beam of the rear rack is dome-shaped for the purpose of increasing the contact of the roof beam with the roof of tunnel. This device has a simple structure suitable for tunnel of different sizes, moves easily without the need for additional support devices, and has a support mechanism for removing and with drawing the support pillar. The top of the furnace roof is covered, thus limiting the phenomenon of falling rocks. The top beam has a profile similar to the furnace line profile, helping the roof maintain its previous structure, reducing pressure on the roof beam by minimizing the phenomenon of soil and rock collapse when the support is removed. Besides, it helps increase the contact area and reduce stress concentration on the top beam

1. Nguyễn Văn Chinh (2016), Biện pháp thi công thu hồi vì chống khu vực +280, Tổng Công ty Than Đông Bắc.
2. Nguyễn Khắc Lĩnh, Nguyễn Văn Xô, Lê Thị Hồng Thắng (2020), Nghiên cứu tính toán thu hồi áp suất cao của cột chống trong quá trình làm việc/ Kỷ yếu hội nghị khoa học trái đất, mỏ, môi trường bền vững lần thứ III “EME 2020”. tr. 280-285.
3. Gamez-Montero P. J., Salazar E., Castilla R., Freire J., Khamashta M., Codina E. (2009), Misalignment effects on the load capacity of a hydraulic cylinder. International Journal of Mechanical Sciences. 2009. Vol. 51. pp. 105-113
4. Yong X., Yang J., Shang J., Xie H. (2015), Design and optimization of a new kind of hydraulic cylinder for mobile robots. Proc. of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2015. Vol. 229, Iss. 18. DOI: 10.1177/0954406215570106.
5. Urazbakhtin R. Yu., Yungmeister D. A. (2019), The results of theoretical and laboratory studies of the rescue complex for coal mines. Izvestiya Uralskogo Gosudarstvennogo Gornogo Universiteta. 2019. Iss. 3. pp. 98-103.
6. Баклашов И.В., Картозия Б.А. (2012). Механика подземных сооружений и конструкции крепей (Издание 3). Студент, Москва, 2012 г., 543 стр.
7. Бакланов И.В., Картозия Б.А. (1975). Механика горных пород. Недра, Москва, 1975 г., 271 стр., УДК: 622.831.3.02:539.2.8.
8. Габов В. В., Нгуен К. Л., Уразбахтин Р. Ю., Юнгмейстер Д. А.(2021), Патент № 202 346 Российская Федерация, МПК E21C 25/04 Механизированная крепь для погашения горных выработок / заявитель и патентообладатель: Санкт-Петербургский горный университет. - № 2020138787; заявл. 26.11.2020, опубл. 12.02.2021, Бюл. № 5.
9. Юнгмейстер Д. А., Уразбахтин Р. Ю., Нгуен Кхак Линь, Тимофеев М. И. (2023), Комплекс для CÔNG NGHIỆP MỎ, SỐ 3 - 2024 25 NGHIÊN CỨU VÀ TRAO ĐỔI CƠ KHÍ, CƠ ĐIỆN MỎ создания хранилищ особо опасных отходов: обоснование конструкции и параметров. Обогащение руд. 2023. № 6. 47-51
Other articles